Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sci Rep ; 13(1): 10600, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391538

RESUMEN

As malaria transmission declines, the need to monitor the heterogeneity of malaria risk at finer scales becomes critical to guide community-based targeted interventions. Although routine health facility (HF) data can provide epidemiological evidence at high spatial and temporal resolution, its incomplete nature of information can result in lower administrative units without empirical data. To overcome geographic sparsity of data and its representativeness, geo-spatial models can leverage routine information to predict risk in un-represented areas as well as estimate uncertainty of predictions. Here, a Bayesian spatio-temporal model was applied on malaria test positivity rate (TPR) data for the period 2017-2019 to predict risks at the ward level, the lowest decision-making unit in mainland Tanzania. To quantify the associated uncertainty, the probability of malaria TPR exceeding programmatic threshold was estimated. Results showed a marked spatial heterogeneity in malaria TPR across wards. 17.7 million people resided in areas where malaria TPR was high (≥ 30; 90% certainty) in the North-West and South-East parts of Tanzania. Approximately 11.7 million people lived in areas where malaria TPR was very low (< 5%; 90% certainty). HF data can be used to identify different epidemiological strata and guide malaria interventions at micro-planning units in Tanzania. These data, however, are imperfect in many settings in Africa and often require application of geo-spatial modelling techniques for estimation.


Asunto(s)
Instituciones de Salud , Malaria , Humanos , Tanzanía/epidemiología , Teorema de Bayes , Hospitales , Malaria/epidemiología
2.
Am J Trop Med Hyg ; 108(6): 1127-1139, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37160282

RESUMEN

For a malaria elimination strategy, Haiti's National Malaria Control Program piloted a mass drug administration (MDA) with indoor residual spraying (IRS) in 12 high-transmission areas across five communes after implementing community case management and strengthened surveillance. The MDA distributed sulfadoxine-pyrimethamine and single low-dose primaquine to eligible residents during house visits. The IRS campaign applied pirimiphos-methyl insecticide on walls of eligible houses. Pre- and post-campaign cross-sectional surveys were conducted to assess acceptability, feasibility, drug safety, and effectiveness of the combined interventions. Stated acceptability for MDA before the campaign was 99.2%; MDA coverage estimated at 10 weeks post-campaign was 89.6%. Similarly, stated acceptability of IRS at baseline was 99.9%; however, household IRS coverage was 48.9% because of the high number of ineligible houses. Effectiveness measured by Plasmodium falciparum prevalence at baseline and 10 weeks post-campaign were similar: 1.31% versus 1.43%, respectively. Prevalence of serological markers were similar at 10 weeks post-campaign compared with baseline, and increased at 6 months. No severe adverse events associated with the MDA were identified in the pilot; there were severe adverse events in a separate, subsequent campaign. Both MDA and IRS are acceptable and feasible interventions in Haiti. Although a significant impact of a single round of MDA/IRS on malaria transmission was not found using a standard pre- and post-intervention comparison, it is possible there was blunting of the peak transmission. Seasonal malaria transmission patterns, suboptimal IRS coverage, and low baseline parasitemia may have limited the effectiveness or the ability to measure effectiveness.


Asunto(s)
Insecticidas , Malaria , Humanos , Primaquina/efectos adversos , Administración Masiva de Medicamentos , Estudios Transversales , Haití/epidemiología , Estudios de Factibilidad , Control de Mosquitos , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control
3.
Viruses ; 15(3)2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36992451

RESUMEN

The number of dengue cases has increased dramatically over the past 20 years and is an important concern, particularly as the trends toward urbanization continue. While the majority of dengue cases are thought to be asymptomatic, it is unknown to what extent these contribute to transmission. A better understanding of their importance would help to guide control efforts. In 2019, a dengue outbreak in La Reunion resulted in more than 18,000 confirmed cases. Between October 2019 and August 2020, 19 clusters were investigated in the south, west, and east of the island, enabling the recruitment of 605 participants from 368 households within a 200 m radius of the home of the index cases (ICs). No active asymptomatic infections confirmed by RT-PCR were detected. Only 15% were possible asymptomatic dengue infections detected by the presence of anti-dengue IgM antibodies. Only 5.3% of the participants had a recent dengue infection confirmed by RT-PCR. Although the resurgence of dengue in La Réunion is very recent (2016), the rate of anti-dengue IgG positivity, a marker of past infections, was already high at 43% in this study. Dengue transmission was focal in time and space, as most cases were detected within a 100-m radius of the ICs, and within a time interval of less than 7 days between infections detected in a same cluster. No particular demographic or socio-cultural characteristics were associated with dengue infections. On the other hand, environmental risk factors such as type of housing or presence of rubbish in the streets were associated with dengue infections.


Asunto(s)
Aedes , Virus del Dengue , Animales , Humanos , Reunión/epidemiología , Virus del Dengue/genética , Brotes de Enfermedades , Anticuerpos Antivirales
4.
Malar J ; 21(1): 345, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401310

RESUMEN

BACKGROUND: Current efforts to estimate the spatially diverse malaria burden in malaria-endemic countries largely involve the use of epidemiological modelling methods for describing temporal and spatial heterogeneity using sparse interpolated prevalence data from periodic cross-sectional surveys. However, more malaria-endemic countries are beginning to consider local routine data for this purpose. Nevertheless, routine information from health facilities (HFs) remains widely under-utilized despite improved data quality, including increased access to diagnostic testing and the adoption of the electronic District Health Information System (DHIS2). This paper describes the process undertaken in mainland Tanzania using routine data to develop a high-resolution, micro-stratification risk map to guide future malaria control efforts. METHODS: Combinations of various routine malariometric indicators collected from 7098 HFs were assembled across 3065 wards of mainland Tanzania for the period 2017-2019. The reported council-level prevalence classification in school children aged 5-16 years (PfPR5-16) was used as a benchmark to define four malaria risk groups. These groups were subsequently used to derive cut-offs for the routine indicators by minimizing misclassifications and maximizing overall agreement. The derived-cutoffs were converted into numbered scores and summed across the three indicators to allocate wards into their overall risk stratum. RESULTS: Of 3065 wards, 353 were assigned to the very low strata (10.5% of the total ward population), 717 to the low strata (28.6% of the population), 525 to the moderate strata (16.2% of the population), and 1470 to the high strata (39.8% of the population). The resulting micro-stratification revealed malaria risk heterogeneity within 80 councils and identified wards that would benefit from community-level focal interventions, such as community-case management, indoor residual spraying and larviciding. CONCLUSION: The micro-stratification approach employed is simple and pragmatic, with potential to be easily adopted by the malaria programme in Tanzania. It makes use of available routine data that are rich in spatial resolution and that can be readily accessed allowing for a stratification of malaria risk below the council level. Such a framework is optimal for supporting evidence-based, decentralized malaria control planning, thereby improving the effectiveness and allocation efficiency of malaria control interventions.


Asunto(s)
Malaria , Niño , Humanos , Estudios Transversales , Tanzanía/epidemiología , Malaria/epidemiología , Malaria/prevención & control , Instituciones de Salud , Manejo de Caso
6.
Malar J ; 21(1): 92, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35300707

RESUMEN

BACKGROUND: To accelerate progress against malaria in high burden countries, a strategic reorientation of resources at the sub-national level is needed. This paper describes how mathematical modelling was used in mainland Tanzania to support the strategic revision that followed the mid-term review of the 2015-2020 national malaria strategic plan (NMSP) and the epidemiological risk stratification at the council level in 2018. METHODS: Intervention mixes, selected by the National Malaria Control Programme, were simulated for each malaria risk strata per council. Intervention mixes included combinations of insecticide-treated bed nets (ITN), indoor residual spraying, larval source management, and intermittent preventive therapies for school children (IPTsc). Effective case management was either based on estimates from the malaria indicator survey in 2016 or set to a hypothetical target of 85%. A previously calibrated mathematical model in OpenMalaria was used to compare intervention impact predictions for prevalence and incidence between 2016 and 2020, or 2022. RESULTS: For each malaria risk stratum four to ten intervention mixes were explored. In the low-risk and urban strata, the scenario without a ITN mass campaign in 2019, predicted high increase in prevalence by 2020 and 2022, while in the very-low strata the target prevalence of less than 1% was maintained at low pre-intervention transmission intensity and high case management. In the moderate and high strata, IPTsc in addition to existing vector control was predicted to reduce the incidence by an additional 15% and prevalence by 22%. In the high-risk strata, all interventions together reached a maximum reduction of 76%, with around 70% of that reduction attributable to high case management and ITNs. Overall, the simulated revised NMSP was predicted to achieve a slightly lower prevalence in 2020 compared to the 2015-2020 NMSP (5.3% vs 6.3%). CONCLUSION: Modelling supported the choice of intervention per malaria risk strata by providing impact comparisons of various alternative intervention mixes to address specific questions relevant to the country. The use of a council-calibrated model, that reproduces local malaria trends, represents a useful tool for compiling available evidence into a single analytical platform, that complement other evidence, to aid national programmes with decision-making processes.


Asunto(s)
Mosquiteros Tratados con Insecticida , Malaria , Niño , Humanos , Incidencia , Malaria/epidemiología , Malaria/prevención & control , Prevalencia , Tanzanía/epidemiología
7.
Math Biosci ; 343: 108750, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883106

RESUMEN

In this work, we present a simple and flexible model for Plasmodium vivax dynamics which can be easily combined with routinely collected data on local and imported case counts to quantify transmission intensity and simulate control strategies. This model extends the model from White et al. (2016) by including case management interventions targeting liver-stage or blood-stage parasites, as well as imported infections. The endemic steady state of the model is used to derive a relationship between the observed incidence and the transmission rate in order to calculate reproduction numbers and simulate intervention scenarios. To illustrate its potential applications, the model is used to calculate local reproduction numbers in Panama and identify areas of sustained malaria transmission that should be targeted by control interventions.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Manejo de Caso , Humanos , Incidencia , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Malaria Vivax/prevención & control , Modelos Teóricos , Plasmodium falciparum
8.
PLOS Glob Public Health ; 2(5): e0000167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962155

RESUMEN

The national deployment of polyvalent community health workers (CHWs) is a constitutive part of the strategy initiated by the Ministry of Health to accelerate efforts towards universal health coverage in Haiti. Its implementation requires the planning of future recruitment and deployment activities for which mathematical modelling tools can provide useful support by exploring optimised placement scenarios based on access to care and population distribution. We combined existing gridded estimates of population and travel times with optimisation methods to derive theoretical CHW geographical placement scenarios including constraints on walking time and the number of people served per CHW. Four national-scale scenarios that align with total numbers of existing CHWs and that ensure that the walking time for each CHW does not exceed a predefined threshold are compared. The first scenario accounts for population distribution in rural and urban areas only, while the other three also incorporate in different ways the proximity of existing health centres. Comparing these scenarios to the current distribution, insufficient number of CHWs is systematically identified in several departments and gaps in access to health care are identified within all departments. These results highlight current suboptimal distribution of CHWs and emphasize the need to consider an optimal (re-)allocation.

10.
Malar J ; 20(1): 324, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315473

RESUMEN

BACKGROUND: Larviciding against malaria vectors in Africa has been limited to indoor residual spraying and insecticide-treated nets, but is increasingly being considered by some countries as a complementary strategy. However, despite progress towards improved larvicides and new tools for mapping or treating mosquito-breeding sites, little is known about the optimal deployment strategies for larviciding in different transmission and seasonality settings. METHODS: A malaria transmission model, OpenMalaria, was used to simulate varying larviciding strategies and their impact on host-seeking mosquito densities, entomological inoculation rate (EIR) and malaria prevalence. Variations in coverage, duration, frequency, and timing of larviciding were simulated for three transmission intensities and four transmission seasonality profiles. Malaria transmission was assumed to follow rainfall with a lag of one month. Theoretical sub-Saharan African settings with Anopheles gambiae as the dominant vector were chosen to explore impact. Relative reduction compared to no larviciding was predicted for each indicator during the simulated larviciding period. RESULTS: Larviciding immediately reduced the predicted host-seeking mosquito densities and EIRs to a maximum that approached or exceeded the simulated coverage. Reduction in prevalence was delayed by approximately one month. The relative reduction in prevalence was up to four times higher at low than high transmission. Reducing larviciding frequency (i.e., from every 5 to 10 days) resulted in substantial loss in effectiveness (54, 45 and 53% loss of impact for host-seeking mosquito densities, EIR and prevalence, respectively). In seasonal settings the most effective timing of larviciding was during or at the beginning of the rainy season and least impactful during the dry season, assuming larviciding deployment for four months. CONCLUSION: The results highlight the critical role of deployment strategies on the impact of larviciding. Overall, larviciding would be more effective in settings with low and seasonal transmission, and at the beginning and during the peak densities of the target species populations. For maximum impact, implementers should consider the practical ranges of coverage, duration, frequency, and timing of larviciding in their respective contexts. More operational data and improved calibration would enable models to become a practical tool to support malaria control programmes in developing larviciding strategies that account for the diversity of contexts.


Asunto(s)
Anopheles , Control de Enfermedades Transmisibles/métodos , Insecticidas , Malaria/prevención & control , África del Sur del Sahara , Animales , Anopheles/crecimiento & desarrollo , Simulación por Computador , Larva , Modelos Teóricos
11.
Elife ; 102021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34058123

RESUMEN

Towards the goal of malaria elimination on Hispaniola, the National Malaria Control Program of Haiti and its international partner organisations are conducting a campaign of interventions targeted to high-risk communities prioritised through evidence-based planning. Here we present a key piece of this planning: an up-to-date, fine-scale endemicity map and seasonality profile for Haiti informed by monthly case counts from 771 health facilities reporting from across the country throughout the 6-year period from January 2014 to December 2019. To this end, a novel hierarchical Bayesian modelling framework was developed in which a latent, pixel-level incidence surface with spatio-temporal innovations is linked to the observed case data via a flexible catchment sub-model designed to account for the absence of data on case household locations. These maps have focussed the delivery of indoor residual spraying and focal mass drug administration in the Grand'Anse Department in South-Western Haiti.


Asunto(s)
Enfermedades Endémicas , Malaria/epidemiología , Estaciones del Año , Antimaláricos/uso terapéutico , Teorema de Bayes , Áreas de Influencia de Salud , Enfermedades Endémicas/prevención & control , Haití/epidemiología , Humanos , Incidencia , Malaria/diagnóstico , Malaria/prevención & control , Modelos Estadísticos , Control de Mosquitos , Análisis Espacio-Temporal , Factores de Tiempo
12.
Malar J ; 20(1): 39, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33435999

RESUMEN

BACKGROUND: The World Health Organization recommends confirmatory diagnosis by microscopy or malaria rapid diagnostic test (RDT) in patients with suspected malaria. In recent years, mobile medical applications (MMAs), which can interpret RDT test results have entered the market. To evaluate the performance of commercially available MMAs, an evaluation was conducted by comparing RDT results read by MMAs to RDT results read by the human eye. METHODS: Five different MMAs were evaluated on six different RDT products using cultured Plasmodium falciparum blood samples at five dilutions ranging from 20 to 1000 parasites (p)/microlitre (µl) and malaria negative blood samples. The RDTs were performed in a controlled, laboratory setting by a trained operator who visually read the RDT results. A second trained operator then used the MMAs to read the RDT results. Sensitivity (Sn) and specificity (Sp) for the RDTs were calculated in a Bayesian framework using mixed models. RESULTS: The RDT Sn of the P. falciparum (Pf) test line, when read by the trained human eye was significantly higher compared to when read by MMAs (74% vs. average 47%) at samples of 20 p/µl. In higher density samples, the Sn was comparable to the human eye (97%) for three MMAs. The RDT Sn of test lines that detect all Plasmodium species (Pan line), when read by the trained human eye was significantly higher compared to when read by MMAs (79% vs. average 56%) across all densities. The RDT Sp, when read by the human eye or MMAs was 99% for both the Pf and Pan test lines across all densities. CONCLUSIONS: The study results show that in a laboratory setting, most MMAs produced similar results interpreting the Pf test line of RDTs at parasite densities typically found in patients that experience malaria symptoms (> 100 p/µl) compared to the human eye. At low parasite densities for the Pf line and across all parasite densities for the Pan line, MMAs were less accurate than the human eye. Future efforts should focus on improving the band/line detection at lower band intensities and evaluating additional MMA functionalities like the ability to identify and classify RDT errors or anomalies.


Asunto(s)
Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Malaria Falciparum/diagnóstico , Plasmodium falciparum/aislamiento & purificación , Humanos
13.
Malar J ; 19(1): 177, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32384923

RESUMEN

BACKGROUND: Recent malaria control efforts in mainland Tanzania have led to progressive changes in the prevalence of malaria infection in children, from 18.1% (2008) to 7.3% (2017). As the landscape of malaria transmission changes, a sub-national stratification becomes crucial for optimized cost-effective implementation of interventions. This paper describes the processes, data and outputs of the approach used to produce a simplified, pragmatic malaria risk stratification of 184 councils in mainland Tanzania. METHODS: Assemblies of annual parasite incidence and fever test positivity rate for the period 2016-2017 as well as confirmed malaria incidence and malaria positivity in pregnant women for the period 2015-2017 were obtained from routine district health information software. In addition, parasite prevalence in school children (PfPR5to16) were obtained from the two latest biennial council representative school malaria parasitaemia surveys, 2014-2015 and 2017. The PfPR5to16 served as a guide to set appropriate cut-offs for the other indicators. For each indicator, the maximum value from the past 3 years was used to allocate councils to one of four risk groups: very low (< 1%PfPR5to16), low (1- < 5%PfPR5to16), moderate (5- < 30%PfPR5to16) and high (≥ 30%PfPR5to16). Scores were assigned to each risk group per indicator per council and the total score was used to determine the overall risk strata of all councils. RESULTS: Out of 184 councils, 28 were in the very low stratum (12% of the population), 34 in the low stratum (28% of population), 49 in the moderate stratum (23% of population) and 73 in the high stratum (37% of population). Geographically, most of the councils in the low and very low strata were situated in the central corridor running from the north-east to south-west parts of the country, whilst the areas in the moderate to high strata were situated in the north-west and south-east regions. CONCLUSION: A stratification approach based on multiple routine and survey malaria information was developed. This pragmatic approach can be rapidly reproduced without the use of sophisticated statistical methods, hence, lies within the scope of national malaria programmes across Africa.


Asunto(s)
Malaria/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Malaria/transmisión , Masculino , Persona de Mediana Edad , Parasitemia/epidemiología , Embarazo , Prevalencia , Factores de Riesgo , Tanzanía/epidemiología , Adulto Joven
14.
Lancet Infect Dis ; 20(8): 953-963, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32277908

RESUMEN

BACKGROUND: Passively collected malaria case data are the foundation for public health decision making. However, because of population-level immunity, infections might not always be sufficiently symptomatic to prompt individuals to seek care. Understanding the proportion of all Plasmodium spp infections expected to be detected by the health system becomes particularly paramount in elimination settings. The aim of this study was to determine the association between the proportion of infections detected and transmission intensity for Plasmodium falciparum and Plasmodium vivax in several global endemic settings. METHODS: The proportion of infections detected in routine malaria data, P(Detect), was derived from paired household cross-sectional survey and routinely collected malaria data within health facilities. P(Detect) was estimated using a Bayesian model in 431 clusters spanning the Americas, Africa, and Asia. The association between P(Detect) and malaria prevalence was assessed using log-linear regression models. Changes in P(Detect) over time were evaluated using data from 13 timepoints over 2 years from The Gambia. FINDINGS: The median estimated P(Detect) across all clusters was 12·5% (IQR 5·3-25·0) for P falciparum and 10·1% (5·0-18·3) for P vivax and decreased as the estimated log-PCR community prevalence increased (adjusted odds ratio [OR] for P falciparum 0·63, 95% CI 0·57-0·69; adjusted OR for P vivax 0·52, 0·47-0·57). Factors associated with increasing P(Detect) included smaller catchment population size, high transmission season, improved care-seeking behaviour by infected individuals, and recent increases (within the previous year) in transmission intensity. INTERPRETATION: The proportion of all infections detected within health systems increases once transmission intensity is sufficiently low. The likely explanation for P falciparum is that reduced exposure to infection leads to lower levels of protective immunity in the population, increasing the likelihood that infected individuals will become symptomatic and seek care. These factors might also be true for P vivax but a better understanding of the transmission biology is needed to attribute likely reasons for the observed trend. In low transmission and pre-elimination settings, enhancing access to care and improvements in care-seeking behaviour of infected individuals will lead to an increased proportion of infections detected in the community and might contribute to accelerating the interruption of transmission. FUNDING: Wellcome Trust.


Asunto(s)
Infecciones Asintomáticas/epidemiología , Reservorios de Enfermedades/estadística & datos numéricos , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Adolescente , Adulto , África/epidemiología , Anciano , Anciano de 80 o más Años , Américas/epidemiología , Asia/epidemiología , Teorema de Bayes , Niño , Preescolar , Análisis por Conglomerados , Estudios Transversales , Reservorios de Enfermedades/parasitología , Femenino , Instituciones de Salud/estadística & datos numéricos , Humanos , Lactante , Estudios Longitudinales , Malaria Falciparum/transmisión , Malaria Vivax/transmisión , Masculino , Persona de Mediana Edad , Prevalencia , Vigilancia en Salud Pública/métodos , Estaciones del Año , Adulto Joven
15.
Malar J ; 19(1): 101, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32122342

RESUMEN

BACKGROUND: More than ever, it is crucial to make the best use of existing country data, and analytical tools for developing malaria control strategies as the heterogeneity in malaria risk within countries is increasing, and the available malaria control tools are expanding while large funding gaps exist. Global and local policymakers, as well as funders, increasingly recognize the value of mathematical modelling as a strategic tool to support decision making. This case study article describes the long-term use of modelling in close collaboration with the National Malaria Control Programme (NMCP) in Tanzania, the challenges encountered and lessons learned. CASE DESCRIPTION: In Tanzania, a recent rebound in prevalence led to the revision of the national malaria strategic plan with interventions targeted to the malaria risk at the sub-regional level. As part of the revision, a mathematical malaria modelling framework for setting specific predictions was developed and used between 2016 and 2019 to (1) reproduce setting specific historical malaria trends, and (2) to simulate in silico the impact of future interventions. Throughout the project, multiple stakeholder workshops were attended and the use of mathematical modelling interactively discussed. EVALUATION: In Tanzania, the model application created an interdisciplinary and multisectoral dialogue platform between modellers, NMCP and partners and contributed to the revision of the national malaria strategic plan by simulating strategies suggested by the NMCP. The uptake of the modelling outputs and sustained interest by the NMCP were critically associated with following factors: (1) effective sensitization to the NMCP, (2) regular and intense communication, (3) invitation for the modellers to participate in the strategic plan process, and (4) model application tailored to the local context. CONCLUSION: Empirical data analysis and its use for strategic thinking remain the cornerstone for evidence-based decision-making. Mathematical impact modelling can support the process both by unifying all stakeholders in one strategic process and by adding new key evidence required for optimized decision-making. However, without a long-standing partnership, it will be much more challenging to sensibilize programmes to the usefulness and sustained use of modelling and local resources within the programme or collaborating research institutions need to be mobilized.


Asunto(s)
Toma de Decisiones , Política de Salud , Malaria/prevención & control , Humanos , Modelos Teóricos , Tanzanía
17.
PLoS One ; 15(2): e0228469, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32074112

RESUMEN

INTRODUCTION: The decision-making process for malaria control and elimination strategies has become more challenging. Interventions need to be targeted at council level to allow for changing malaria epidemiology and an increase in the number of possible interventions. Models of malaria dynamics can support this process by simulating potential impacts of multiple interventions in different settings and determining appropriate packages of interventions for meeting specific expected targets. METHODS: The OpenMalaria model of malaria dynamics was calibrated for all 184 councils in mainland Tanzania using data from malaria indicator surveys, school parasitaemia surveys, entomological surveillance, and vector control deployment data. The simulations were run for different transmission intensities per region and five interventions, currently or potentially included in the National Malaria Strategic Plan, individually and in combination. The simulated prevalences were fitted to council specific prevalences derived from geostatistical models to obtain council specific predictions of the prevalence and number of cases between 2017 and 2020. The predictions were used to evaluate in silico the feasibility of the national target of reaching a prevalence of below 1% by 2020, and to suggest alternative intervention stratifications for the country. RESULTS: The historical prevalence trend was fitted for each council with an agreement of 87% in 2016 (95%CI: 0.84-0.90) and an agreement of 90% for the historical trend (2003-2016) (95%CI: 0.87-0.93) The current national malaria strategy was expected to reduce the malaria prevalence between 2016 and 2020 on average by 23.8% (95% CI: 19.7%-27.9%) if current case management levels were maintained, and by 52.1% (95% CI: 48.8%-55.3%) if the case management were improved. Insecticide treated nets and case management were the most cost-effective interventions, expected to reduce the prevalence by 25.0% (95% CI: 19.7%-30.2) and to avert 37 million cases between 2017 and 2020. Mass drug administration was included in most councils in the stratification selected for meeting the national target at minimal costs, expected to reduce the prevalence by 77.5% (95%CI: 70.5%-84.5%) and to avert 102 million cases, with almost twice higher costs than those of the current national strategy. In summary, the model suggested that current interventions are not sufficient to reach the national aim of a prevalence of less than 1% by 2020 and a revised strategic plan needs to consider additional, more effective interventions, especially in high transmission areas and that the targets need to be revisited. CONCLUSION: The methodology reported here is based on intensive interactions with the NMCP and provides a helpful tool for assessing the feasibility of country specific targets and for determining which intervention stratifications at sub-national level will have most impact. This country-led application could support strategic planning of malaria control in many other malaria endemic countries.


Asunto(s)
Antimaláricos/uso terapéutico , Simulación por Computador , Malaria/prevención & control , Administración Masiva de Medicamentos , Planificación Estratégica , Niño , Preescolar , Análisis Costo-Beneficio , Estudios de Factibilidad , Organizaciones de Planificación en Salud/organización & administración , Organizaciones de Planificación en Salud/normas , Indicadores de Salud , Humanos , Malaria/economía , Malaria/epidemiología , Administración Masiva de Medicamentos/economía , Administración Masiva de Medicamentos/métodos , Administración Masiva de Medicamentos/normas , Control de Mosquitos/economía , Control de Mosquitos/métodos , Control de Mosquitos/organización & administración , Control de Mosquitos/normas , Parasitemia/economía , Parasitemia/epidemiología , Vigilancia de la Población/métodos , Prevalencia , Instituciones Académicas/economía , Instituciones Académicas/estadística & datos numéricos , Planificación Estratégica/economía , Planificación Estratégica/normas , Tanzanía/epidemiología
18.
Malar J ; 18(1): 263, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31370901

RESUMEN

BACKGROUND: Most impact prediction of malaria vector control interventions has been based on African vectors. Anopheles albimanus, the main vector in Central America and the Caribbean, has higher intrinsic mortality, is more zoophilic and less likely to rest indoors. Therefore, relative impact among interventions may be different. Prioritizing interventions, in particular for eliminating Plasmodium falciparum from Haiti, should consider local vector characteristics. METHODS: Field bionomics data of An. albimanus from Hispaniola and intervention effect data from southern Mexico were used to parameterize mathematical malaria models. Indoor residual spraying (IRS), insecticide-treated nets (ITNs), and house-screening were analysed by inferring their impact on the vectorial capacity in a difference-equation model. Impact of larval source management (LSM) was assumed linear with coverage. Case management, mass drug administration and vaccination were evaluated by estimating their effects on transmission in a susceptible-infected-susceptible model. Analogous analyses were done for Anopheles gambiae parameterized with data from Tanzania, Benin and Nigeria. RESULTS: While LSM was equally effective against both vectors, impact of ITNs on transmission by An. albimanus was much lower than for An. gambiae. Assuming that people are outside until bedtime, this was similar for the impact of IRS with dichlorodiphenyltrichloroethane (DDT) or bendiocarb, and impact of IRS was less than that of ITNs. However, assuming people go inside when biting starts, IRS had more impact on An. albimanus than ITNs. While house-screening had less impact than ITNs or IRS on An. gambiae, it had more impact on An. albimanus than ITNs or IRS. The impacts of chemoprevention and chemotherapy were comparable in magnitude to those of strategies against An. albimanus. Chemo-prevention impact increased steeply as coverage approached 100%, whilst clinical-case management impact saturated because of remaining asymptomatic infections. CONCLUSIONS: House-screening and repellent IRS are potentially highly effective against An. albimanus if people are indoors during the evening. This is consistent with historical impacts of IRS with DDT, which can be largely attributed to excito-repellency. It also supports the idea that housing improvements have played a critical role in malaria control in North America. For elimination planning, impact estimates need to be combined with feasibility and cost-analysis.


Asunto(s)
Anopheles , Control de Enfermedades Transmisibles/métodos , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores , África , Animales , Anopheles/efectos de los fármacos , Anopheles/crecimiento & desarrollo , Manejo de Caso/estadística & datos numéricos , Haití , Humanos , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Vacunas contra la Malaria/uso terapéutico , Administración Masiva de Medicamentos/estadística & datos numéricos , Modelos Teóricos , Especificidad de la Especie , Vacunación/estadística & datos numéricos
19.
Malar J ; 17(1): 452, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518365

RESUMEN

BACKGROUND: A nationwide, school, malaria survey was implemented to assess the risk factors of malaria prevalence and bed net use among primary school children in mainland Tanzania. This allowed the mapping of malaria prevalence at council level and assessment of malaria risk factors among school children. METHODS: A cross-sectional, school, malaria parasitaemia survey was conducted in 25 regions, 166 councils and 357 schools in three phases: (1) August to September 2014; (2) May 2015; and, (3) October 2015. Children were tested for malaria parasites using rapid diagnostic tests and were interviewed about household information, parents' education, bed net indicators as well as recent history of fever. Multilevel mixed effects logistic regression models were fitted to estimate odds ratios of risk factors for malaria infection and for bed net use while adjusting for school effect. RESULTS: In total, 49,113 children were interviewed and tested for malaria infection. The overall prevalence of malaria was 21.6%, ranging from < 0.1 to 53% among regions and from 0 to 76.4% among councils. The malaria prevalence was below 5% in 62 of the 166 councils and above 50% in 18 councils and between 5 and 50% in the other councils. The variation of malaria prevalence between schools was greatest in regions with a high mean prevalence, while the variation was marked by a few outlying schools in regions with a low mean prevalence. Overall, 70% of the children reported using mosquito nets, with the highest percentage observed among educated parents (80.7%), low land areas (82.7%) and those living in urban areas (82.2%). CONCLUSIONS: The observed prevalence among school children showed marked variation at regional and sub-regional levels across the country. Findings of this survey are useful for updating the malaria epidemiological profile and for stratification of malaria transmission by region, council and age groups, which is essential for guiding resource allocation, evaluation and prioritization of malaria interventions.


Asunto(s)
Malaria/epidemiología , Parasitemia/epidemiología , Estudiantes/estadística & datos numéricos , Adolescente , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Masculino , Prevalencia , Factores de Riesgo , Instituciones Académicas , Tanzanía/epidemiología
20.
Sci Rep ; 8(1): 16769, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30425283

RESUMEN

Malaria control programs implementing Long-Lasting Insecticidal Nets (LLINs) are encouraged to conduct field monitoring of nets' survival, fabric integrity and insecticidal bio-efficacy. The reference method for testing the insecticide activity of LLINs needs 100 two-to-five-day-old female mosquitoes per net, which is highly resource-intensive. We aimed at identifying an alternative protocol, using fewer mosquitos, while ensuring a precision in the main indicator of ±5 percentage points (pp). We compared different laboratory methods against the probability of the LLIN to fail the test as determined by a hierarchical Bayesian model. When using 50 mosquitoes per LLIN and considering mortality only instead of mortality or knock-down as validity criteria, the average error in the measure of the proportion of nets considered as valid was 0.40 pp. The 95% confidence interval of this value never exceed 5 pp when the number of LLIN tested was ≥40. This method slightly outperforms the current recommendations. As a conclusion, testing the bio-efficacy of LLINs with half as many mosquitoes provides a valid evaluation of the proportion of valid LLINs. This approach could increase entomology labs' testing capacity and decrease costs, with no impact in the decision process for public health purposes.


Asunto(s)
Mosquiteros Tratados con Insecticida , Malaria/prevención & control , Control de Mosquitos/métodos , Animales , Teorema de Bayes , Bioensayo , Intervalos de Confianza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...